Characterization of polycrystalline silicon-based photonic crystal- suspended membrane for high temperature applications
نویسندگان
چکیده
We present the design and the characterization of a polycrystalline silicon (Si)-based photonic crystal (PhC)-suspended membrane, working in the mid-infrared wavelengths. In order to facilitate transmission measurement, the PhC membrane is released by removing the underneath Si substrate. Around 97% reflection and 3% transmission at 3.58-μm wavelength are measured at room temperature. Characterization is also done at 450°C and it reveals that the peak reflection of the PhC membrane shifts by 75 nm to higher wavelengths. This corresponds to a linear wavelength shift of 0.174 nm∕°C and the thermo-optic coefficient is calculated to be þ1.70 × 10−4 K−1. By altering the dimension of the PhC air holes, it is also shown that such a thermo-optic effect is compensated. © 2014 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JNP.8.084096]
منابع مشابه
Near-infrared characterization of gallium nitride photonic-crystal waveguides and cavities.
We report the design and optical characterization of fully suspended wire waveguides and photonic crystal (PhC) membranes fabricated on a gallium nitride layer grown on silicon substrate operating at 1.5 μm. W1-type PhC waveguides are coupled with suspended wires and are investigated using a standard end-fire setup. The experimental and theoretical dispersion properties of the propagating modes...
متن کاملHigh-Quality Factor Suspended-Wire 1D Photonic Crystal Micro-cavity in Silicon-on-Insulator
We present a comparison of high Q-factor tapered membrane-type onedimensional photonic crystal micro-cavities embedded in photonic wire waveguides based on silicon-on-insulator (SOI). Q-factor values as large as 24,000 have been measured, together with normalized transmission of 67%: an improvement in the Q-factor value in comparison with previous results obtained on structures with silicon cor...
متن کاملNovel Design of Optical Channel Drop Filter Based on Photonic Crystal Ring Resonators
In this paper, a new design of optical channel drop filter based on two- dimensional photonic crystal ring resonators with triangular lattice is proposed. The rods of this structure is silicon with the refractive index 3.46 and the surrounding environment is air with the refractive index of 1.The widest photonic band gap obtained is for filling ratio of r/a = 0.2. The filter’s transmission spec...
متن کاملSilicon photonic crystal thermal emitter at near-infrared wavelengths
Controlling thermal emission with resonant photonic nanostructures has recently attracted much attention. Most of the work has concentrated on the mid-infrared wavelength range and/or was based on metallic nanostructures. Here, we demonstrate the experimental operation of a resonant thermal emitter operating in the near-infrared (≈1.5 μm) wavelength range. The emitter is based on a doped silico...
متن کاملQuality Factor Enhancement of Optical Channel Drop Filters Based on Photonic Crystal Ring Resonators
In this paper, a channel drop ring resonator filter based on two dimensional photonic crystal is proposed which is suitable for all optical communication systems. The multilayer of silicon rods in the center of resonant ring enables one to adjust resonant wavelength of the ring and enhance power coupling efficiency between ring and waveguide. Refractive index and radius of multilayer rods insid...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014